PENGERTIAN SPLK
Sistem persamaan yang terdiri atas sebuah persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel dua disebut sistem persamaan linear-kuadrat (SPLK).
JENIS SPLK DAN BENTUK UMUM
Berdasarkan karakteristik dan bagian bentuk kuadratnya, sistem persamaan linear dan kuadrat (SPLK) dapat dibedakan menjadi dua macam, yaitu sebagai berikut.
1. SPLK dengan bagian kuadrat berbentuk eksplisit
Suatu persamaan dua variabel x dan y dikatakan berbentuk eksplisit jika persamaan itu dapat diubah menjadi bentuk y = f(x) atau x = f(y). Oleh karena itu, SPLK eksplisit ini memiliki bentuk umum sebagai berikut. y = ax + b ……………………. (bagian linear) y = px2 + qx + r ……………. (bagian kuadrat) |
2. SPLK dengan bagian kuadrat berbentuk implisit
Persamaan dua variabel x dan y dikatakan berbentuk implisit jika persamaan itu mempunyai bentuk umum sebagai berikut. ax + by + c = 0 ………………………………. (bagian linear) px2 + qy2 + rxy + sx + ty + u = 0……. (bagian kuadrat) |
CARA MENENTUKAN PENYELESAIAN SPLK
Langkah 1: Pada bagian persamaan linear, nyatakan x dalam y atau y dalam x.
Langkah 2: Subtitusikan x atau y yang diperoleh dari langkah pertama ke bagian bentuk kuadrat sehingga diperoleh persamaan kuadrat dalam x atau y. Langkah 3: Selesaikan persamaan kuadrat yang diperoleh dari langkah dua, kemudian nilai-nilai yang diperoleh disubtitusikan ke persamaan linear.
Interpretasi geometri dari penyelesaian SPLK adalah titik potong yang diperoleh dari garis lurus pada persamaan linear dengan kurva parabola pada persamaan kuadrat. Dengan demikian, banyaknya penyelesaian pada SPLK ditentukan oleh diskriminan (D) dari persamaan kuadrat yang diperoleh pada langkah kedua.
a. | Jika D > 0 maka SPLK memiliki dua penyelesian berbeda (garis lurus memotong kurva parabola di dua titik yang berlainan). |
b. | Jika D = 0 maka SPLK memiliki tepat satu penyelesaian (garis lurus menyinggung kurva parabola). |
c. | Jika D < 0 maka SPLK tidak memiliki penyelesaian (garis lurus tidak memotong ataupun menyinggung kurva parabola). |
Hal ini dapat kalian lihat pada gambar di bawah ini.
Dari gambar di atas, tampak bahwa jika D adalah diskriminan persamaan kuadrat y = px2 + qx + r dan y = ax + b, berlaku sebagai berikut.
1) Kedua grafik berpotongan di titik A dan B (SPLK mempunyai 2 penyelesaian), berarti D > 0.
2) Kedua grafik bersinggungan di titik C (SPLK mempunyai 1 penyelesaian), berarti D = 0.
3) Kedua grafik tidak berpotongan (SPLK tidak mempunyai penyelesaian sama sekali), berati D < 0.
CONTOH SOAL DAN PEMBAHASAN
1. Diberikan dua buah persamaan yaitu persamaan linear dua variable dan kuadrat sebagai berikut:
(i) y = 2x + 3
(ii) y = x2 − 4x + 8
Tentukan himpunan penyelesaian (Hp) dari kedua persamaan tersebut di atas!
Pembahasan
Substitusikan y dari persamaan (i) ke y pada persamaan (ii), atau sebaliknya dari (ii) ke (i), lanjutkan dengan operasi aljabar.
x2 − 4x + 8 = 2x + 3
x2 − 4x + 8 − 2x − 3 = 0
x2 − 6x + 5 = 0
Berikutnya faktorkan:
x2 − 6x + 5 = 0
(x − 1)(x − 5) = 0
Dapatkan nilai x yang pertama:
x − 1 = 0
x = 1
Dapatkan nilai x yang kedua:
x − 5 = 0
x = 5
Berikutnya mencari nilai-nilai dari y dengan substitusi nilai x ke persamaan (i):
Untuk x = 1 maka
y = 2x + 3
y = 2(1) + 3
y = 2 + 3
y = 5
Dari sini didapatkan pasangan (x, y) yaitu (1, 5)
Untuk x = 5 maka
y = 2x + 3
y = 2(5) + 3
y = 10 + 3
y = 13
Dari sini didapatkan pasangan (x, y) yaitu (5, 13)
Sehingga himpunan penyelesaiannya Hp :{(1, 5), (5, 13)}
2. Diberikan dua buah persamaan sebagai berikut:
(i) x − y = 5
(ii) x2 − 6yx + 9y2 − 9 = 0
Tentukan himpunan penyelesaian dari persamaan-persamaan di atas!
Pembahasan
(i) x − y = 5
(ii) x2 − 6yx + 9y2 − 9 = 0
Terlebih dahulu faktorkan persamaan kuadratnya, ada beberapa cara untuk memfaktorkan bentuk “kuadrat dalam kuadrat” seperti bentuk di atas, salah satunya sebagai berikut:
Ingat kembali bentuk ax2 + bc + c = 0 . Jika diterapkan pada persamaan (ii) maka didapat nilai a, b dan c sebagai berikut:
x2 − 6yx + 9y2 − 9 = 0
a = 1
b = − 6y
c = 9y2 − 9
Sehingga:
x2 − 6yx + 9y2 − 9 = 0
(x − 3y − 3)(x − 3y + 3) = 0
Dari pemfaktoran ini kita dapat dua persamaan baru yaitu:
x − 3y − 3 = 0 …..(iii)
x − 3y + 3 = 0 …..(iv)
Dari persamaan (ii) dan (iii)
x − y = 5
x − 3y = 3
_________ _
2y = 2
y = 1
x − y = 5
x − 1 = 5
x = 6
Dari persamaan (ii) dan (iv)
x − y = 5
x − 3y = − 3
___________ _
2y = 8
y = 4
x − y = 5
x − 4 = 5
x = 9
Sehingga penyelesaiannya adalah {(6, 1), (9, 4)}
3. Carilah himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
x + y + 2 = 0
y = x2 – x – 2
Pembahasan
Persamaan x + y + 2 = 0 dapat kita tuliskan sebagai berikut.
y = −x – 2
Subtitusikan nilai y = −x – 2 ke persamaan y = x2 – x – 2 sehingga diperoleh:
⇒ −x – 2 = x2 – x – 2
⇒ x2 – x + x – 2 + 2 = 0
⇒ x2 = 0
⇒ x = 0
Subtitusikan nilai x = 0 ke persamaan y = −x – 2 sehingga diperoleh:
⇒ y = −(0) – 2
⇒ y = –2
Jadi, himpunan penyelesaiannya adalah {(0, −2)}. Tafsiran geometrinya berupa titik singgung antara garis lurus dan kurva parabola, yaitu di titik (0, −2) seperti yang ditunjukkan pada gambar berikut ini.
4. Carilah himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
y = x2 – 1
x – y = 3
Pembahasan
Persamaan x – y = 3 dapat kita tulis ulang menjadi bentuk berikut.
y = x – 3
subtitusikan y = x – 3 ke dalam persamaan y = x2 – 1 sehingga kita peroleh:
⇒ x – 3 = x2 – 1
⇒ x – 3 = x2 – 1
⇒ x2 – x – 1 + 3 = 0
⇒ x2 – x + 2 = 0
Persamaan kuadrat di atas sulit untuk difaktorkan. Jika kita hitung nilai diskriminannya dengan nilai a = 1, b = −1, dan c = 2, maka kita peroleh:
D = b2 – 4ac
D = (−1)2 – 4(1)(2)
D = 1 – 8
D = −7
Karena diskriminannya negatif (D < 1) maka persamaan kuadrat itu tidak memiliki penyelesaian. Oleh karena itu, SPLK di atas tidak memiliki penyelesaian sehingga himpunan penyelesaiannya dapat ditulis ∅. Interpretasi geometri dari SPLK ini adalah tidak adanya titik singgung maupun titik potong antara parabola dan garis lurus. Hal ini dapat kalian lihat pada gambar di bawah ini.
5. Diberikan dua buah persamaan sebagai berikut:
(i) y = 5x + 4
(ii) y = x2 + 13x − 16Pembahasan
x2 + 13x − 16 = 5x + 4
x2 + 13x − 16 − 5x − 4 = 0
x2 + 8x − 20 = 0
(x + 10)(x − 2) = 0
Nilai x yang pertama
x + 10 = 0
x = − 10
Nilai x yang kedua
x − 2 = 0
x = 2
Nilai-nilai y, dari persamaan pertama:
Untuk x = − 10 didapat nilai y
y = 5x + 4
y = 5(−10) + 4 = − 46
Untuk x = 2, didapat nilai y
y = 5x + 4
y = 5(2) + 4 = 14
Hp : {(− 10, − 46), (2, 14)}
DAFTAR PUSTAKA
Sukardi.2020. "Materi, Soal, dan Pembahasan – Sistem Persamaan Linear dan Kuadrat"https://mathcyber1997.com/sistem-linear-kuadrat/. diakses 10 September 2021
blogmipa.2017"SPLK: Pengertian, Jenis, Bentuk Umum, Cara Penyelesaian, Contoh Soal dan Pembahasan"https://blogmipa-matematika.blogspot.com/2017/11/sistem-persamaan-linear-dan-kuadrat.html. diakses pada tanggal 10 September 2021
Matematikastudycenter."Sistem Persamaan Linear Kuadrat SPLK 10 SMA".https://matematikastudycenter.com/kelas-10-sma/83-sistem-persamaan-linear-kuadrat-splk-10-sma.diakses pada tanggal 10 September 2021
Tidak ada komentar:
Posting Komentar