Bentuk Umum Sistem Persamaan Kuadrat dan Kuadrat
Sistem persamaan kuadrat dan kuadrat atau disingkat dengan SPKK merupakan sistem persamaan yang terdiri atas dua persamaan kuadrat yang masing-masing memuat dua variabel. Bentuk umumnya ialah:
x2 – 2x – 3 = x2 – 1
x2 – 2x – 3 – x2 + 1 = 0
–2x – 2 = 0
–2x = 2
Untuk x = –1 maka y = (–1)2 – 1 = 1 – 1 = 0 Jadi H = {(–1, 0}
Jawab
y = y
2x2 – 3x + 1 = x2 + x – 2
2x2 – 3x + 1 – x2 – x + 2 = 0
x2 – 4x + 3 = 0
(x – 1)(x – 3) = 0
x1 = 1 dan x2 = 3
Untuk x1 = 1 maka y = (1)2 + (1) – 2 = 0
Untuk x2 = 3 maka y = (3)2 + (3) – 2 = 10
Jadi H = {(1, 0), (3, 10)}
Jawab
y = y
x2 – x – 5 = ax2 + 5x + 1
x2 – x – 5 – ax2 – 5x – 1 = 0
x2 – ax2 – 6x – 6 = 0
(1 – a)x2 – 6x – 6 = 0
Syarat :
D = b2 – 4ac = 0
(–6)2 – 4(1 – a)(–6) = 0
36 + 24(1 – a) = 0
36 + 24 – 24a = 0
60 – 24a = 0
–24a = –60
a = 60/24
a = 5/2
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = 5x² ke y = 6x² – 7x. Untuk itu hasilnya akan menjadi:
5x² = 6x² – 7x
6x² – 5x² – 7x = 0
x² – 7x = 0
x(x – 7) = 0
x = 0 atau x = 7
Selanjutnya nilai x di atas disubtsitusikan ke persamaan y = 5x². Maka :
Untuk x = 0 → y = 5x²
y = 5(0)²
y = 0
Untuk x = 7 → y = 5x²
y = 5(7)²
y = 245
Jadi himpunan penyelesaian SPKK tersebut ialah {(0, 0), (7, 245)}.
7. Tentukan himpunan penyelesaian SPKK jika persamaannya y = x² – 3 dan y = x² – 2x – 9?
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = x² – 3 ke y = x² – 2x – 9. Untuk itu hasilnya akan menjadi seperti di bawah ini:
x² – 3 = x² – 2x – 9
x² – x² = -2x – 9 + 3
2x = -6
x = -3
Setelah itu x = -3 disubstitusikan ke y = x² – 3. Maka:
y = x² – 3
y = (-3)² – 3
y = 6
Jadi himpunan penyelesaian SPKK tersebut ialah {(-3, 6)}.
8. Tentukan himpunan penyelesaian SPKK jika persamaannya y = -4x² dan y = x² + 4x + 3?
Pembahasan.
Contoh soal sistem persamaan kuadrat kuadrat ini dapat diselesaikan dengan melakukan substitusi y = -4x² ke y = x² + 4x + 3. Untuk itu hasilnya akan menjadi seperti di bawah ini:
-4x² = x² + 4x + 3
x² + 4x² + 4x + 3 = 0
5x² + 4x + 3 = 0
Langkah selanjutnya menggunakan cara diskriminan untuk menyelesaikan persamaan di atas. Maka:
5x² + 4x + 3 = 0, dimana a = 5, b = 4 dan c = 3
D = b² – 4ac
D = (4)² – 4(5)(3)
D = 16 – 60
D = -44
Jadi himpunan penyelesaian SPKK tersebut ialah {∅} atau himpunan kosong karena D < 1.
Daftar Pustaka
Suamarwo.Muji.2017. "Sistem Persamaan Kuadrat Kuadrat"https://www.materimatematika.com/2017/11/sistem-persamaan-kuadrat-dan-kuadrat.html. diakses pada tanggal 17 September 2021
Mipa.blog." Contoh Soal dan Pembahasan SPKK (Sistem Persamaan kuadrat kuadrat ".https://blogmipa-matematika.blogspot.com/2017/12/contoh-soal-SPKK.html. diakses pada tanggal 17 September 2021
Amin. Eka Nur. " Contoh soal Sistem Persamaan Kuadrat kuadrat ".https://rpp.co.id/soal-sistem-persamaan-kuadrat-kuadrat-spkk/.diakses pada tanggal 17 September 2021
Tidak ada komentar:
Posting Komentar